Respuesta :

Answer:

[tex]a'=4.5[/tex]

[tex]b'=7.5[/tex]

[tex]c'=9[/tex]

[tex]d'=12[/tex]

[tex]e'=15[/tex]

Step-by-step explanation:

From the question we are told that:

Sides of Polygon 1

 a=3

 b=5

 c=6

 d=8

 e=10

Perimeter of polygon 2 P_2=48

Generally the equation for Polygon 1 is mathematically given by

 P_1=a+b+c+d+e

 P_1=3+5+6+8+10

 P_1=32

Generally the sides of similar polygon with Perimeter P_2=48 is mathematically given by

Side\ of\ polygon\ 2 =\frac{side\ of\ polygon\ 1}{perimeter\ of\ polygon\ 1}*perimeter\ of\ polygon\ 2

Therefore

[tex]a'=\frac{a}{P_1}*P_2\\a'=\frac{3}{32}*48[/tex]

[tex]a'=4.5[/tex]

[tex]b'=\frac{b}{P_1}*P_2\\b'=\frac{5}{32}*48[/tex]

[tex]b'=7.5[/tex]

[tex]c'=\frac{c}{P_1}*P_2\\c'=\frac{6}{32}*48[/tex]

[tex]c'=9[/tex]

[tex]d'=\frac{d}{P_1}*P_2\\d'=\frac{8}{32}*48[/tex]

[tex]d'=12[/tex]

[tex]e'=\frac{e}{P_1}*P_2\\e'=\frac{10}{32}*48[/tex]

[tex]e'=15[/tex]