Answer:
[tex]a'=4.5[/tex]
[tex]b'=7.5[/tex]
[tex]c'=9[/tex]
[tex]d'=12[/tex]
[tex]e'=15[/tex]
Step-by-step explanation:
From the question we are told that:
Sides of Polygon 1
a=3
b=5
c=6
d=8
e=10
Perimeter of polygon 2 P_2=48
Generally the equation for Polygon 1 is mathematically given by
P_1=a+b+c+d+e
P_1=3+5+6+8+10
P_1=32
Generally the sides of similar polygon with Perimeter P_2=48 is mathematically given by
Side\ of\ polygon\ 2 =\frac{side\ of\ polygon\ 1}{perimeter\ of\ polygon\ 1}*perimeter\ of\ polygon\ 2
Therefore
[tex]a'=\frac{a}{P_1}*P_2\\a'=\frac{3}{32}*48[/tex]
[tex]a'=4.5[/tex]
[tex]b'=\frac{b}{P_1}*P_2\\b'=\frac{5}{32}*48[/tex]
[tex]b'=7.5[/tex]
[tex]c'=\frac{c}{P_1}*P_2\\c'=\frac{6}{32}*48[/tex]
[tex]c'=9[/tex]
[tex]d'=\frac{d}{P_1}*P_2\\d'=\frac{8}{32}*48[/tex]
[tex]d'=12[/tex]
[tex]e'=\frac{e}{P_1}*P_2\\e'=\frac{10}{32}*48[/tex]
[tex]e'=15[/tex]