Respuesta :

It's D.
3.5-9.75 is -6.25
-6.25 divided by - 2.5 is 2.5

Answer:

Option (d) is correct.

[tex]\left(3\frac{1}{2}-9\frac{3}{4}\right)\div \left(-2.5\right)=2.5[/tex]

Step-by-step explanation:

Given: Expression [tex]\left(3\frac{1}{2}-9\frac{3}{4}\right)\div \left(-2.5\right)[/tex]

We have to find the value of the given expression [tex]\left(3\frac{1}{2}-9\frac{3}{4}\right)\div \left(-2.5\right)[/tex]

Consider the given expression [tex]\left(3\frac{1}{2}-9\frac{3}{4}\right)\div \left(-2.5\right)[/tex]

Convert mixed fraction into fraction as [tex]a\frac{b}{c}=\frac{a\cdot \:c+b}{c}[/tex]

We get,

[tex]=\left(\frac{7}{2}-\frac{39}{4}\right)\div \left(-2.5\right)[/tex]

[tex]\frac{7}{2}-\frac{39}{4}=-\left(\frac{39}{4}-\frac{7}{2}\right)[/tex]

[tex]=\frac{\frac{39}{4}-\frac{7}{2}}{2.5}[/tex]

Consider [tex]\frac{39}{4}-\frac{7}{2}[/tex]

Make denominator equal.

we get,

[tex]=\frac{39}{4}-\frac{14}{4}=\frac{25}{4}[/tex]

Thus, [tex]\left(\frac{7}{2}-\frac{39}{4}\right)\div \left(-2.5\right)[/tex] becomes  [tex]=\frac{\frac{25}{4}}{2.5}[/tex]

Apply fraction rule, [tex]\frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}[/tex]

we have,

[tex]=\frac{25}{4\cdot \:2.5}[/tex]

Simplify, we  have

= 2.5

Thus, [tex]\left(3\frac{1}{2}-9\frac{3}{4}\right)\div \left(-2.5\right)=2.5[/tex]