Respuesta :
Answer:
The value of f out of given expression [tex]d=16ef^2[/tex] is [tex]\frac{\pm 1}{4}\sqrt{\frac{d}{e}}[/tex]
Step-by-step explanation:
Given : expression [tex]d=16ef^2[/tex]
We have to solve for f.
Consider the given expression [tex]d=16ef^2[/tex]
Divide both side by 16e, we get,
[tex]\frac{d}{16e}=f^2[/tex]
Now, taking square root, both sides, we have,
[tex]\sqrt{\frac{d}{16e}}=\sqrt{f^2}[/tex]
Simplify, we get,
[tex]\sqrt{\frac{d}{16e}}=f[/tex]
We know [tex]\sqrt{16}=\pm 4[/tex] , we get,
[tex]\frac{\pm 1}{4}\sqrt{\frac{d}{e}}=f[/tex]
Thus, The value of f out of given expression [tex]d=16ef^2[/tex] is [tex]\frac{\pm 1}{4}\sqrt{\frac{d}{e}}[/tex]
Answer: [tex]f=\pm \frac{\sqrt{de}}{4e}[/tex]
Step-by-step explanation:
Here, the given expression is,
[tex]d=16ef^2[/tex]
or [tex]16ef^2=d[/tex]
[tex]\implies f^2 =\frac{d}{16e}[/tex]
[tex]\implies f=\pm\sqrt{\frac{d}{16e}}[/tex]
[tex]\implies f =\pm \frac{\sqrt{d}}{4\sqrt{e}}[/tex]
[tex]\implies f= \pm \frac{\sqrt{de}}{4e}[/tex] ( By rationalization )
Which is the required value of f.