Hey there :)
We apply the same rules as we did to the previous questions
V (big cylinder) = [tex] \pi r^2h[/tex]
2264 = [tex] \pi r^2(8)[/tex][tex] \frac{2264}{8} = \pi r^2 [/tex]
283 = [tex] \pi r^2[/tex]
[tex] \frac{283}{ \pi } = r^2[/tex]
[tex] \sqrt{ \frac{283}{ \pi } } = r[/tex]
r ≈ 9.49 cm
The ratio from the big cylinder to the small is:
8 : 4
Therefore, the big cylinder is 2 times the small cylinder
[tex] \frac{9.49}{2} [/tex] = r
r ≈ 4.75 (radius of small cylinder)
V(small cylinder) = [tex] \pi (4.75)^2(4)[/tex]
= 283 cm³
Your answer is option C. 283 cm³