Respuesta :
dP/dt = 1000 * 9^t is the bacteria population's growth rate.where:P(t) is the population at time t, andP(0) = 6000.
The population after one hour would be:
P(1) = P(0) + <Integral of dP/dt from 0 to 1>
P(1) = P(0) + [ 1000 * 9^1 / ln(9) - 1000 * 9^0 / ln(9) ]
P(1) = 6000 + 3641 = 9461 would be the answer
The population after one hour would be:
P(1) = P(0) + <Integral of dP/dt from 0 to 1>
P(1) = P(0) + [ 1000 * 9^1 / ln(9) - 1000 * 9^0 / ln(9) ]
P(1) = 6000 + 3641 = 9461 would be the answer
Answer:
14384
Step-by-step explanation:
We are given that
P(0)=6000
[tex]\frac{dP}{dt}=1000\cdot 9^t[/tex]
We have to find the population after 1 hour.
[tex]dP=1000(9^t)dt[/tex]
Taking integration on both sides
[tex]P=1000\int 9^t dt[/tex]
[tex]P(t)=\frac{1000}{log 9}9^t[/tex]+C
Using formula:[tex]\int a^t=\frac{1}{log a}a^t+C[/tex]
Substitute t=0 and P(0)=6000
[tex]6000=\frac{1000}{log9}+C[/tex]
[tex]C=6000-\frac{1000}{log 9}=6000-\frac{1000}{0.954}[/tex]
[tex]C=4952[/tex]
Substitute the values then we get
[tex]P(t)=1047.95(9^t)+4952[/tex]
Substitute t=1
Then, we get
[tex]P(1)=1047.95(9)+4952[/tex]
[tex]P(1)=14384[/tex]
Hence, the population after one hour=14384