Respuesta :
Central angle = π / 2
length of the arc = angle * radius = (π/2) (4.5 cm)
length of the arc = (3.14 / 2) (4.5) cm = 7.065 cm ≈ 7.1 cm
Answer: 7.1 cm
length of the arc = angle * radius = (π/2) (4.5 cm)
length of the arc = (3.14 / 2) (4.5) cm = 7.065 cm ≈ 7.1 cm
Answer: 7.1 cm
Answer:-The length of the arc intersected by a central angle [tex]\frac{\pi}{2}\text{ radians}[/tex] is 7.1 cm.
Explanation:-
Let the length of the arc intersected by a central angle be l.
Given:- Central angle[tex]\theta=\frac{\pi}{2}\text{ radians}[/tex]
Radius r=4.5 cm
We know that ,
[tex]l=\theta\ r\\\Rightarrow\ l=\frac{\pi}{2}\times4.5\\=\frac{3.14\times4.5}{2}=7.065\approx7.1\text{ cm .......[Round to the nearest tenth]}[/tex]
Thus, the length of the arc intersected by a central angle [tex]\frac{\pi}{2}\text{ radians}[/tex] is 7.1 cm.