Answer: The percentage of decrease is: " 33 ⅓ %" .
_____________________________________________
Explanation:
____________________________________________
Given:
____________________________________________
10 years ago, # of illiterate people = 150 lakhs;
"Now" ; # of illiterate people = 100 lakhs ;
____________________________________________
So; the decrease in the # of illiterate people = "(150 - 100) = 50 lakhs ;
____________________________________________
To calculate the "percentage of decrease" :
____________________________________________
The "percentage of decrease" =
{"decrease in the # of illiterate people"} / {"# of illiterate people started with"] ;
× 100 (percent).
__________________________________________________
= [tex] \frac{50}{150} [/tex] * 100 % ;
{Note that: [tex] \frac{50}{150} [/tex] = [tex] \frac{5}{15}[/tex] ;
→ The "zeros" cancel out ;
→ [tex] \frac{50}{150} [/tex] * 100 % ;
= [tex] \frac{5}{15}[/tex] * 100 ;
Note: [tex] \frac{5}{15}[/tex] = [tex] \frac{(5/5)}{(15/5)} [/tex] ;
= [tex] \frac{1}{3} [/tex] ;
__________________________________________________
→ [tex] \frac{1}{3}[/tex] * 100 = [tex] \frac{1}{3}[/tex] * [tex] \frac{100}{1}[/tex] ;
_________________________________________________________
= [tex] \frac{(1*100)}{(3*1)} [/tex] % ;
= [tex] \frac{(100)}{(3)} [/tex] % ;
= "(100 ÷ 3) % ;
= " 33 ⅓ % " .
_____________________________________________________
Answer: The percentage of decrease is: " 33 ⅓ %" .
_____________________________________________________