Graph the function fx=-2 sin2x+3.

You must graph at least one full period. Follow the steps below to graph.
Draw a dotted line for the midline on the graph
Mark a point for the beginning and end of one period of the function
Mark a point for the maximum point
Mark a point for the minimum point
Draw the graph connecting these points. Double check that this is the graph of the function.

Graph the function fx2 sin2x3 You must graph at least one full period Follow the steps below to graph Draw a dotted line for the midline on the graph Mark a poi class=

Respuesta :

Answer:

Connect the points marked, and you'll have the graph of the function \( [tex]f(x) = -2 \sin(2x) + 3 \).[/tex]

Step-by-step explanation:

To graph the function \( f(x) = -2 \sin(2x) + 3 \), we'll follow these steps:

1. **Determine the midline**: The midline is the average value of the function. For a sine function, the midline is the horizontal line that the function oscillates around. Since the amplitude is 2 and the vertical shift is 3, the midline is at \( y = 3 \).

2. **Determine the period**: The period of a sine function is \( \frac{2\pi}{b} \), where \( b \) is the coefficient of \( x \) inside the sine function. In this case, \( b = 2 \), so the period is \( \frac{2\pi}{2} = \pi \).

3. **Identify key points**: We'll mark points for the beginning and end of one period, the maximum point, and the minimum point.

4. **Draw the graph**: We'll connect these points to graph one full period of the function.

Let's start:

1. **Midline**: \( y = 3 \) (draw a dotted line)

2. **Period**: \( \pi \)

3. **Key Points**:

  - Beginning of one period: \( x = 0 \)

  - End of one period: \( x = \pi \)

[tex]- Maximum point: \( \left( \frac{\pi}{4}, 5 \right) \) (when \( \sin(2x) = 1 \))[/tex]

[tex]- Minimum point: \( \left( \frac{3\pi}{4}, 1 \right) \) (when \( \sin(2x) = -1 \))[/tex]

4. **Graph**:

```

           |

       6   +-------------------------------+---------+

           |                               |         |

           |                               |    *    | Minimum Point

           |                               |         |

       5   +-------------------------------+---------+

           |                               |         |

           |                               |         |

           |                               | Maximum | Point

       4   +-------------------------------+---------+

           |                               |         |

           |                               |         |

           |                               |         |

       3   +-------------------------------+---------+-- Midline

           |                               |         |

           |                               |         |

           |                               |         |

       2   +-------------------------------+---------+

           |                               |         |

           |                               |         |

           |                               |         |

       1   +-------------------------------+---------+

           |                               |         |

           |                               |         |

           +-------------------------------+---------+------- x

                0              π/2            π        3π/2

```

Connect the points marked, and you'll have the graph of the function \( f(x) = -2 \sin(2x) + 3 \).