Respuesta :

[tex]\bf \begin{cases} a^7=7777\\\\ \cfrac{a^6}{b}=11 \end{cases} \\\\ -------------------------------\\\\ a^7\iff a^6a^1=7777\implies \begin{cases} a^6=\frac{7777}{a}\\\\ a=\frac{7777}{a^6} \end{cases}\\\\ -------------------------------\\\\ \cfrac{a^6}{b}=11\implies \cfrac{a^6}{11}=b\implies \cfrac{\frac{7777}{a}}{11}=b\implies \cfrac{7777}{a}\cdot \cfrac{1}{11}=b \\\\\\ \cfrac{707}{a}=b\\\\ -------------------------------\\\\[/tex]

[tex]\bf a\cdot b=\cfrac{7777}{a^6}\cdot \cfrac{707}{a}\implies ab=\cfrac{7777\cdot 707}{a^6a^1}\implies ab=\cfrac{7777\cdot 707}{a^7} \\\\\\ \textit{but we know }a^7=7777\qquad thus\implies ab=\cfrac{7777}{a^7}\cdot 707 \\\\\\ ab=\cfrac{7777}{7777}\cdot 707\implies ab=1\cdot 707\implies ab=707[/tex]

Answer:

[tex]ab=707[/tex]

Step-by-step explanation:

Given that

[tex]a^7=7777\\[/tex]

[tex]a^6/b=11[/tex]

We have to find the value of ab

WE see that when we divide I equation by II equation we get ab

[tex]\frac{a^7}{\frac{a^6}{b} } =\frac{a^7b}{a^6}[/tex]

by rule for reciprocals

Now use exponent rule for simplifying a terms

[tex]a^{7-6} b =\frac{7777}{11} \\ab=707[/tex]