Respuesta :

Answer:  " m = zC / (C − z) " .
___________________________________
Explanation:
_________________________
Given:  1/C + 1/m = 1/z ;  Solve for "m".

Subtract  "1/C" from each side of the equation:
____________________________________
1/C + 1/m − 1/C = 1/z − 1/C  ;

to get:  1/m = 1/z − 1/C ;
____________________________________
Now, multiply the ENTIRE EQUATION (both sides); by "(mzC"); to get ride of the fractions:
_________________

mzC {1/m = 1/z − 1/C} ;

to get:  zC = mC − mz ;

Factor out an "m" on the "right-hand side" of the equation:

zC = m(C − z) ;  Divide EACH side of the equation by "(C − z)" ; to isolate "m" on one side of the equation;

zC / (C − z) = m(C − z) / m ;  to get:   24/8 = 3  24

zC/ (C − z) = m ;      m = zC/ (C − z) .
___________________________________________________