Respuesta :

ayune

Converting the radicals into exponent numbers, √3 (⁴√3) = ⁴√27

To work with radical numbers or roots, it is easier to express them in exponent:

[tex]\sqrt[n]{a^{b}}=a^{\frac{b}{n}[/tex]

Recall the rules of exponent operations:

  1. Product.  [tex]a^{b}.a^{c}=a^{b+c}[/tex]
  2. Quotient. [tex]a^{b}:a^{c}=a^{b-c}[/tex]
  3. Power. [tex](a^{b})^{c}=a^{b.c}[/tex]
  4. Power of a product. [tex](a.b)^{c}=a^{c}.b^{c}[/tex]
  5. Zero power. a⁰ = 1
  6. Negative exponent. [tex]a^{-b}=\frac{1}{a^{b}}[/tex]

Note that the first 3 rules use the same base. If there are more than 1 base number, then group the exponent that have the same base first.

Example:

[tex](2^{3}.3^{-2}) : (2^{-3}.3^{2})=( 2^{3}:2^{-3}).(3^{-2}:.3^{2})[/tex]

Tips: To simplify exponent numbers, sometimes it is useful to modify the base whenever possible.

Example:

8².2⁻⁵ = (2³)². 2⁻⁵ = 2⁶. 2⁻⁵ = 2⁶⁻⁵ = 2¹ = 2

The given problem:

Simplify  √3 (⁴√3)

[tex]\sqrt{3}=3^{1/2}[/tex]

[tex]\sqrt[4]{3} =3^{1/4}[/tex]

Hence,

[tex]\sqrt{3}.\sqrt[4]{3} =3^{1/2}.3^{1/4}\\ =3^{1/2+1/4}=3^{3/4}\\ =\sqrt[4]{3^{3}}= \sqrt[4]{27}[/tex]

Learn more about radical numbers here:

https://brainly.com/question/21104002

#SPJ4