Respuesta :

[tex] \cos(x) = \frac{b}{h} \\ \cos(x) = \frac{4 .9}{6.8} \\ \cos(x) = 0.720 \\ x = \cos^{ - 1} (0.720) \\ x = 44 \degree[/tex]

Answer:

x ≈ 44°

Step-by-step explanation:

        We will use a trigonometry function to solve for x. We can see that we have values for the adjacent side and hypotenuse. This means we will be using cosine. Cosine is [tex]\frac{adjacent }{hypotenuse}[/tex]

cos(x) =  [tex]\frac{adjacent }{hypotenuse}[/tex]        [Given]

cos(x) =  [tex]\frac{4.9}{6.8}[/tex]                   [Plug-in the values we have]

x ≈ 43.8969                 [Find the inverse cosine function of both sides]

x ≈ 44°                          [Rounding to nearest degree]