Respuesta :

Pretty sure x is 90 and y is 43. 

Answer:

The values of x and y are: [tex]90^{\circ}[/tex] and [tex]43^{\circ}[/tex]

Step-by-step explanation:

An isosceles triangle has two congruent sides and two congruent base angles.

Given triangle ABC is an isosceles triangle , since it has two congruent sides i.e AB=AC .

also given in the triangle the base angle C is [tex]47^{\circ}[/tex].

By the definition, the isosceles triangle has two congruent base i.e [tex]\angle B =\angle C[/tex].

⇒[tex]\angle B=47^{\circ}[/tex]

Angle Bisector means A line AD splits an angle A into two equal angles i.e, [tex]\angle A=2 y^{\circ}[/tex]

Now, by the triangle angle sum theorem, sum of the measure of the angle in triangle ABC is [tex]180^{\circ}[/tex].

therefore, we have in triangle ABC,

[tex]\angle A +\angle B+\angle C =180^{\circ}[/tex]

putting the values of angles A, angle B and angle C to find the value of y.

[tex]2 y^{\circ}+47^{\circ}+47^{\circ}=180^{\circ}[/tex]

[tex]2 y^{\circ}+94^{\circ}=180^{\circ}[/tex]

[tex]2 y^{\circ}=86^{\circ}[/tex]

simplify we get, [tex]y=43^{\circ}[/tex]

Now, to find the values of x , we again use the triangle angle sum theorem, sum of the measure of the angle in triangle ADC is [tex]180^{\circ}[/tex]

∴ [tex]y +\angle B+x=180^{\circ}[/tex]

[tex]43^{\circ}+47+x=180^{\circ}[/tex]

[tex]90^{\circ}+x=180^{\circ}[/tex]

⇒ [tex]x=90^{\circ}[/tex]

Therefore, the values of x and y are: [tex]90^{\circ}[/tex] and [tex]43^{\circ}[/tex]