Respuesta :
[tex]3*( \frac{5}{4n} +1,8) = ?[/tex]
[tex]3*( \frac{5}{\diagup\!\!\!\!\!4n}+ \frac{7,2n}{\diagup\!\!\!\!\!4n} ) =[/tex]
[tex]3*(5+7,2n) =[/tex]
[tex]15 + 21,6n =[/tex]
[tex]21,6n = - 15[/tex]
[tex]n = \frac{-15}{21,6} [/tex]
[tex]n \approx 0.69[/tex]
Determine the product of [tex]3*( \frac{5}{4n} +1,8) = ?[/tex]
[tex]3*( \frac{5}{4*(0,69)} +1,8) [/tex]
[tex]3*( \frac{5}{2,76} +1,8) =[/tex]
[tex]3*( \approx1,8 +1,8) =[/tex]
[tex]3*( 3,6) = \boxed{10,8}[/tex]
Answer:
[tex]\boxed{10,8}[/tex]
[tex]3*( \frac{5}{\diagup\!\!\!\!\!4n}+ \frac{7,2n}{\diagup\!\!\!\!\!4n} ) =[/tex]
[tex]3*(5+7,2n) =[/tex]
[tex]15 + 21,6n =[/tex]
[tex]21,6n = - 15[/tex]
[tex]n = \frac{-15}{21,6} [/tex]
[tex]n \approx 0.69[/tex]
Determine the product of [tex]3*( \frac{5}{4n} +1,8) = ?[/tex]
[tex]3*( \frac{5}{4*(0,69)} +1,8) [/tex]
[tex]3*( \frac{5}{2,76} +1,8) =[/tex]
[tex]3*( \approx1,8 +1,8) =[/tex]
[tex]3*( 3,6) = \boxed{10,8}[/tex]
Answer:
[tex]\boxed{10,8}[/tex]
Answer:
[tex]3.75n+5.4[/tex]
Step-by-step explanation:
We are asked to find the product of 3 and [tex](\frac{5}{4}n+1.8[/tex].
First of all, we will write our given problem as multiplication problem.
[tex]3*(\frac{5}{4}n+1.8)[/tex]
We will use distributive property [tex]a(b+c)=a\cdot b+a\cdot c[/tex] to solve our given problem.
[tex]3\cdot \frac{5}{4}n+3\cdot 1.8[/tex]
[tex]\frac{15}{4}n+5.4[/tex]
[tex]3.75n+5.4[/tex]
Therefore, the product of our given problem would be [tex]3.75n+5.4[/tex].