What is the simplest form of the expression representing this quotient?

x^2 - 2x
___________
x^2 - 10x + 25

“Divided by”

6x^2 - 12x
__________
x^2 - 25

Respuesta :

9514 1404 393

Answer:

  (x +5)/(6x -30)

Step-by-step explanation:

In general, you factor the expressions and cancel factors that can be cancelled. The "invert and multiply" rule for dividing fractions also applies to rational expressions.

  [tex]\dfrac{x^2-2x}{x^2-10x+25}\div\dfrac{6x^2-12x}{x^2-25}=\dfrac{x^2-2x}{x^2-10x+25}\times\dfrac{x^2-25}{6x^2-12x}\\\\=\dfrac{x(x-2)(x-5)(x+5)}{6x(x-2)(x-5)(x-5)}=\dfrac{x+5}{6(x-5)}=\boxed{\dfrac{x+5}{6x-30}}\qquad x\notin\{-5,0,2,5\}[/tex]