Step-by-step explanation:
Recall the Identity:
[tex]\tan(2\theta) = \frac{2tan(\theta)}{1 -\tan(\theta)^2}[/tex]
Let's r rewrite the Identity:
[tex]\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan(\theta)^2} \\ \tan(2\theta) \times (1-\tan(\theta)^2) = \frac{2\tan(\theta)}{1-\tan(\theta)^2} \times (1-\tan(\theta)^2) \\ \tan(2\theta)(1-\tan(\theta)^2) = 2\tan(\theta) \\ \frac{\tan(2\theta)(1 -\tan(\theta)^2)}{\tan(2\theta)} = \frac{2\tan(\theta)}{\tan(2\theta)} \\ 1-\tan(\theta)^2 = \frac{2\tan(\theta)}{\tan(2\theta)}[/tex]