Answer:
1) [tex]f(3) = 3[/tex]
2) [tex]x = 2[/tex]
Step-by-step explanation:
Given:
[tex]f(x) = 2x -3[/tex]
Evaluating [tex]f(3)[/tex]:
[tex]f(3) = 2(3) -3 \\ f(3) = 6 -3 \\ f(3) = 3[/tex]
Solving for [tex]f(x) = -1[/tex]:
[tex]2x -3 = 1 \\ 2x -3 +3 = 1 +3 \\ 2x = 4 \\ \frac{2x}{2} = \frac{4}{2} \\ x = 2[/tex]