Respuesta :

Answer:

7

Step-by-step explanation:

Using the definition

n[tex]P_{r}[/tex] = [tex]\frac{n!}{(n-r)!}[/tex]

where n! = n(n - 1)(n - 2)..... 3 × 2 × 1

Then

7[tex]P_{1}[/tex] = [tex]\frac{7!}{(7-1)!}[/tex] = [tex]\frac{7!}{6!}[/tex] ← cancel out the multiples 6 ×5 × 4 × 3 × 2 × 1 , then

7[tex]P_{1}[/tex] = 7