Explanation:
KEY POINTS
Understanding work is quintessential to understanding systems in terms of their energy, which is necessary for higher level physics.
Here are a few example problems:
(1.a) Consider a constant force of two newtons (F = 2 N) acting on a box of mass three kilograms (M = 3 kg). Calculate the work done on the box if the box is displaced 5 meters.
(1.b) Since the box is displaced 5 meters and the force is 2 N, we multiply the two quantities together. The object’s mass will dictate how fast it is accelerating under the force, and thus the time it takes to move the object from point a to point b. Regardless of how long it takes, the object will have the same displacement and thus the same work done on it.
(2.a) Consider the same box (M = 3 kg) being pushed by a constant force of four newtons (F = 4 N). It begins at rest and is pushed for five meters (d = 5m). Assuming a frictionless surface, calculate the velocity of the box at 5 meters.
(2.b) We now understand that the work is proportional to the change in kinetic energy, from this we can calculate the final velocity. What do we know so far? We know that the block begins at rest, so the initial kinetic energy must be zero. From this we algebraically isolate and solve for the final velocity