Respuesta :

Answer:

[tex]s(v) \ge 4[/tex]

Step-by-step explanation:

Given

[tex]s(v) = \sqrt[3]{v}[/tex]

[tex]v = 64[/tex] ---- minimum

Required

The range of s

s represents the side length of the cube.

So, first we solve for s in [tex]s(v) = \sqrt[3]{v}[/tex]

Substitute [tex]v = 64[/tex]

[tex]s = \sqrt[3]{64}[/tex]

[tex]s = 4[/tex]

This means that [tex]s = 4[/tex] when [tex]v = 64[/tex]

In other words, the minimum value of s is 4

Hence, the range is:

[tex]s(v) \ge 4[/tex]