Respuesta :

Given:

The vertices of the rectangle ABCD are A(0,1), B(2,4), C(6,0), D(4,-3).

To find:

The area of the rectangle.

Solution:

Distance formula:

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using the distance formula, we get

[tex]AB=\sqrt{(2-0)^2+(4-1)^2}[/tex]

[tex]AB=\sqrt{(2)^2+(3)^2}[/tex]

[tex]AB=\sqrt{4+9}[/tex]

[tex]AB=\sqrt{13}[/tex]

Similarly,

[tex]BC=\sqrt{(6-2)^2+(0-4)^2}[/tex]

[tex]BC=\sqrt{(4)^2+(-4)^2}[/tex]

[tex]BC=\sqrt{16+16}[/tex]

[tex]BC=\sqrt{32}[/tex]

[tex]BC=4\sqrt{2}[/tex]

Now, the length of the rectangle is [tex]AB=\sqrt{13}[/tex] and the width of the rectangle is [tex]BC=4\sqrt{2}[/tex]. So, the area of the rectangle is:

[tex]A=length \times width[/tex]

[tex]A=\sqrt{13}\times 4\sqrt{2}[/tex]

[tex]A=4\sqrt{26}[/tex]

[tex]A\approx 20[/tex]

Therefore, the area of the rectangle is 20 square units.