Respuesta :

Answer:

[tex](\frac{f}{g})(x) = \sqrt{x + 1}[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \sqrt{x^2 - 1[/tex]

[tex]g(x) =\sqrt{x - 1[/tex]

Required

Find [tex](\frac{f}{g})(x)[/tex]

[tex](\frac{f}{g})(x)[/tex] is calculated as:

[tex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]

This gives:

[tex](\frac{f}{g})(x) = \frac{\sqrt{x^2 - 1}}{\sqrt{x - 1}}[/tex]

Apply difference of two squares on the numerator

[tex](\frac{f}{g})(x) = \frac{\sqrt{x - 1}*\sqrt{x + 1}}{\sqrt{x - 1}}[/tex]

[tex](\frac{f}{g})(x) = \sqrt{x + 1}[/tex]