Respuesta :

Answer:

Indeed, the given triangle is a right triangle.

Step-by-step explanation:

A triangle is formed by the following three points: [tex]A(x,y) = (x_{1}, y_{1})[/tex], [tex]B(x,y) = (x_{2}, y_{1})[/tex] and [tex]C(x,y) = (x_{2}, y_{2})[/tex]. Then, we construct the following vectors:

[tex]\overrightarrow {BA} = (x_{2}-x_{1}, y_{1}-y_{1})[/tex]

[tex]\overrightarrow{BA} = (x_{2}-x_{1}, 0)[/tex] (1)

[tex]\overrightarrow{BC} = (x_{2}-x_{2}, y_{2} - y_{1})[/tex]

[tex]\overrightarrow{BC} = (0, y_{2}-y_{1})[/tex] (2)

If triangle ABC is a right triangle, then [tex]\overrightarrow{BA}\,\bullet\,\overrightarrow{BC} = 0[/tex]. By (1) and (2) we have this expression:

[tex](x_{2} - x_{1})\cdot (0) + (0)\cdot (y_{2} - y_{1}) = 0[/tex]

Therefore, the given triangle is a right triangle.

Otras preguntas