Answer:
A. 11.25
Step-by-step explanation:
If point C(x, y) divides line segment AB with end points at A([tex]x_1,y_1[/tex]) and B([tex]x_2,y_2\\[/tex]) in the ratio on n:m, then the coordinates of point C is:
[tex]x=\frac{n}{n+m}(x_2-x_1)+x_1 \\\\y=\frac{n}{n+m}(y_2-y_1)+y_1[/tex]
Given that segment AB is divided by point C in the ratio of 3:1. Given A(3, 12) and B (14, 17). Let coordinate of C be (x, y), hence:
[tex]x=\frac{n}{n+m}(x_2-x_1)+x_1\\\\x=\frac{3}{3+1}(14-3)+3=\frac{3}{4}(11)+3=11.25 \\\\\\y=\frac{n}{n+m}(y_2-y_1)+y_1\\\\y=\frac{3}{3+1}(17-12)+12=\frac{3}{4}(5)+12=15.75[/tex]
Therefore, the coordinate of point C = (11.25, 15.75)
The x coordinate of point C is 11.25