Answer:
The maximum time guaranteed = 19.04 minutes.
Explanation:
From the given problem data, we have:
Let Y be the random variable which follows the normal distribution.
So,
Y ~ N(u = 15, SD = 2.4
Where, u = mean and SD = Standard Deviation
Let the maximum time guaranteed is = M
So,
P (Y > M) = 0.05 equation 1
Convert this equation 1 into standard normal variable, that is,
P(Y> M) = 0.05
1 - P(Y [tex]\leq[/tex] M) = 0.05
P(Y [tex]\leq[/tex] M) = 1 - 0.05
P(Y [tex]\leq[/tex] M) = 0.95
P[tex](\frac{Y-u}{SD} \leq \frac{M-u}{SD} )[/tex] = 0.95
P ( Z [tex]\leq \frac{M - 15}{2.4}[/tex] ) = 0.95 Equation 2
From the equation 2, we have,
[tex]\frac{M-15}{2.4}[/tex] = 1.644853627
1.644853627 value is from using the function of Excel
( =NORSINV(0.95)) = 1.644853627
So,
M = 1.644853627 + 2.4 + 15
M = 19.04
Hence, the maximum time guaranteed = 19.04 minutes.