Respuesta :

Answer:

[tex]\frac{\sqrt{21} }{5}[/tex]

Step-by-step explanation:

Given

cosθ = - [tex]\frac{2}{5}[/tex]

Using the identity

sin²θ + cos²θ = 1 , then

sinθ = ± [tex]\sqrt{1-cos^20}[/tex]

       = ± [tex]\sqrt{1-(-\frac{2}{5})^2 }[/tex]

      = ± [tex]\sqrt{1-\frac{4}{25} }[/tex]

      = ± [tex]\sqrt{\frac{21}{25} }[/tex]

     = ± [tex]\frac{\sqrt{21} }{5}[/tex]

Since θ is in second quadrant the sinθ > 0 , thus

sinθ = [tex]\frac{\sqrt{21} }{5}[/tex]