Respuesta :

Given:

The equations of a system of equations are

[tex]y=-2x^2+3x-1[/tex]

[tex]x+y=-1[/tex]

To find:

The solution of the given system of equations.

Solution:

We have,

[tex]y=-2x^2+3x-1[/tex]           ...(i)

[tex]x+y=-1[/tex]                      ...(ii)

Using (i) and (ii), we get

[tex]x+(-2x^2+3x-1)=-1[/tex]

[tex]x-2x^2+3x-1+1=0[/tex]

[tex]-2x^2+4x=0[/tex]

Taking out the common factors.

[tex]2x(-x+2)=0[/tex]

Using zero product property,we get

[tex]2x=0[/tex] and [tex]-x+2=0[/tex]

[tex]x=0[/tex] and [tex]2=x[/tex]

For x=0, we have

[tex]0+y=-1[/tex]

[tex]y=-1[/tex]

For x=2, we have

[tex]2+y=-1[/tex]

[tex]y=-1-2[/tex]

[tex]y=-3[/tex]

Therefore, the two solutions of the given system of equations are (0,-1) and (2,-3).