Answer: The new volume of gas is 28.5 L
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 1.00 atm (at STP)
[tex]P_2[/tex] = final pressure of gas = 102.6 kPa = 1.01 atm (1 kPa= 0.0098 atm)
[tex]V_1[/tex] = initial volume of gas = 10.0 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]273.15K[/tex] (STP)
[tex]T_2[/tex] = final temperature of gas = [tex]785.15K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{1.00\times 10.0}{273.15}=\frac{1.01\times V_2}{785.15}[/tex]
[tex]V_2=28.5L[/tex]
The new volume of gas is 28.5 L