In ΔEFG, \overline{EG}
EG
is extended through point G to point H, \text{m}\angle EFG = (2x+1)^{\circ}m∠EFG=(2x+1)
∘
, \text{m}\angle FGH = (6x+2)^{\circ}m∠FGH=(6x+2)
∘
, and \text{m}\angle GEF = (x+19)^{\circ}m∠GEF=(x+19)
∘
. Find \text{m}\angle GEF.m∠GEF.