Answer:
a) P( [tex]Y^{C}[/tex] | X ) = 0.180
b) P(Y | [tex]X^{C}[/tex] ) = 0.998
Step-by-step explanation:
Let
P(X) - Probability that he acts hungry
P(Y) - Probability that he had ate dinner,
Given,
P(X | Y) = 0.5
P(X | [tex]Y^{C}[/tex] ) = 0.99
P(Y) = 0.9
a.)
P( [tex]Y^{C}[/tex] | X ) = [tex]\frac{P( X | Y^{C} ). P(Y^{C} ) }{P( X | Y^{C} ). P(Y^{C} ) + P( X | Y ) . P (Y) }[/tex]
= [tex]\frac{(0.99)(0.1)}{(0.99)(0.1) + (0.5)(0.9)} = \frac{0.099}{0.549}[/tex] = 0.180
⇒P( [tex]Y^{C}[/tex] | X ) = 0.180
b.)
P(Y | [tex]X^{C}[/tex] ) = [tex]\frac{(1 - P(X | Y ) ) . P(Y)}{P( X^{C} ) } = \frac{(1 - P(X | Y ) ) . P(Y)}{ 1 - P( X ) }[/tex]
= [tex]\frac{(1 - 0.5)(0.9)}{1 - [(0.99)(0.1) + (0.5)(0.9) ]} = \frac{(0.5)(0.9)}{1 - [(0.099) + (0.45) ]} = \frac{0.45}{1 - [0.540]} = \frac{0.45}{0.451}[/tex] = 0.998
⇒P(Y | [tex]X^{C}[/tex] ) = 0.998