Find the new set of coordinates given the scale factor for k > 1. E = (-1, -2), F = (2, -5), G = (5, -1), H = (1, 1) Scale factor = 6 E'= F' = G' = H' =

Respuesta :

Answer:

The new set of coordinates are [tex]E'(x,y) = (-6,-12)[/tex], [tex]F'(x,y) = (12,-30)[/tex], [tex]G'(x,y) = (30,-6)[/tex] and [tex]H'(x,y) = (6,6)[/tex].

Step-by-step explanation:

Vectorially speaking, dilation can be defined by this equation:

[tex]D'(x,y) = O(x,y) +k\cdot (D(x,y)-O(x,y))[/tex] (1)

Where:

[tex]O(x,y)[/tex] - Center of dilation.

[tex]D(x,y)[/tex] - Original point.

[tex]k[/tex] - Scale factor.

[tex]D'(x,y)[/tex] - Dilated point.

Let suppose that center of dilation is located at origin, we determine the new set of coordinates below:

[tex]E'(x,y) = O(x,y) +k\cdot (E(x,y)-O(x,y))[/tex]

[tex]E'(x,y) = (0,0) +6\cdot (-1,-2)[/tex]

[tex]E'(x,y) = (-6,-12)[/tex]

[tex]F'(x,y) = O(x,y) + k\cdot (F(x,y)-O(x,y))[/tex]

[tex]F'(x,y) = (0,0) +6\cdot (2,-5)[/tex]

[tex]F'(x,y) = (12,-30)[/tex]

[tex]G'(x,y) = O(x,y) + k\cdot (G(x,y)-O(x,y))[/tex]

[tex]G'(x,y) = (0,0) + 6\cdot (5,-1)[/tex]

[tex]G'(x,y) = (30,-6)[/tex]

[tex]H'(x,y) = O(x,y) +k\cdot (H(x,y)-O(x,y))[/tex]

[tex]H'(x,y) = (0,0) + 6\cdot (1,1)[/tex]

[tex]H'(x,y) = (6,6)[/tex]

The new set of coordinates are [tex]E'(x,y) = (-6,-12)[/tex], [tex]F'(x,y) = (12,-30)[/tex], [tex]G'(x,y) = (30,-6)[/tex] and [tex]H'(x,y) = (6,6)[/tex].