Answer:
The steps are :
[tex] {tan}^{2} θ - {cot}^{2} θ = {sec}^{2} θ(1 - {cot}^{2} θ)[/tex]
[tex]RHS = {sec}^{2} θ(1 - {cot}^{2} θ)[/tex]
[tex]RHS = (1 + {tan}^{2} θ)(1 - \frac{1}{ {tan}^{2} θ} )[/tex]
[tex]RHS = (1 + {tan}^{2} θ)( \frac{ {tan}^{2}θ - 1}{ {tan}^{2} θ} )[/tex]
[tex]RHS = - \frac{(1 + {tan}^{2}θ)(1 - {tan}^{2} θ)}{ {tan}^{2} θ}[/tex]
[tex]RHS = - \frac{(1 - {tan}^{4} θ)}{ {tan}^{2} θ} [/tex]
[tex]RHS = \frac{ {tan}^{4} θ - 1}{ {tan}^{2}θ } [/tex]
[tex]RHS = {tan}^{2} θ - \frac{1}{ {tan}^{2}θ } [/tex]
[tex]RHS = {tan}^{2} θ - {cot}^{2} θ[/tex]
[tex]RHS = LHS (proven)[/tex]