A half-life of 9 minutes corresponds to a decay factor k such that
[tex]\dfrac12=e^{9k}\implies k=-\dfrac19\ln\left(\dfrac12\right)[/tex]
Then the time it takes for the substance to decay from 610 g to 124 g is time t such that
[tex]124\,\mathrm g=(610\,\mathrm g)e^{kt}[/tex]
Solve for t :
[tex]\dfrac{62}{305}=e^{kt}[/tex]
[tex]\ln\left(\dfrac{62}{305}\right)=kt[/tex]
[tex]t=\dfrac1k\ln\left(\dfrac{62}{305}\right)\approx20.686[/tex]
so it takes about 20.7 min for the 610 g sample to decay down to 124 g.