Respuesta :
Answer:
a
[tex]\lambda = 3.68 *10^{-36} \ m[/tex]
b
[tex]\lambda_p = 1.28*10^{-14} \ m[/tex]
Explanation:
From the question we are told that
The mass of the person is [tex]m = 180 \ kg[/tex]
The speed of the person is [tex]v = 1 \ m/s[/tex]
The energy of the proton is [tex]E_ p = 5 MeV = 5 *10^{6} eV = 5.0 *10^6 * 1.60 *10^{-19} = 8.0 *10^{-13} \ J[/tex]
Generally the de Broglie wavelength is mathematically represented as
[tex]\lambda = \frac{h}{m * v }[/tex]
Here h is the Planck constant with the value
[tex]h = 6.62607015 * 10^{-34} J \cdot s[/tex]
So
[tex]\lambda = \frac{6.62607015 * 10^{-34}}{ 180 * 1 }[/tex]
=> [tex]\lambda = 3.68 *10^{-36} \ m[/tex]
Generally the energy of the proton is mathematically represented as
[tex]E_p = \frac{1}{2} * m_p * v^2_p[/tex]
Here [tex]m_p[/tex] is the mass of proton with value [tex]m_p = 1.67 *10^{-27} \ kg[/tex]
=> [tex]8.0*10^{-13} = \frac{1}{2} * 1.67 *10^{-27} * v^2[/tex]
=> [tex]v _p= \sqrt{\frac{8.0 *10^{-13}}{ 0.5 * 1.67 *10^{-27}} }[/tex]
=> [tex]v = 3.09529 *10^{7} \ m/s[/tex]
So
[tex]\lambda_p = \frac{h}{m_p * v_p }[/tex]
so [tex]\lambda_p = \frac{6.62607015 * 10^{-34}}{1.67 *10^{-27} * 3.09529 *10^{7} }[/tex]
=> [tex]\lambda_p = 1.28*10^{-14} \ m[/tex]