Respuesta :
x + y = -3 . . . (1)
y = 2x + 2 . . . (2)
substituting (2) into (1) gives, x + 2x + 2 = -3
3x = -5
x = -5/3
From (2), 2(-5/3) + 2 = -10/3 + 2 = -4/3
Required solution (-5/3, -4/3)
y = 2x + 2 . . . (2)
substituting (2) into (1) gives, x + 2x + 2 = -3
3x = -5
x = -5/3
From (2), 2(-5/3) + 2 = -10/3 + 2 = -4/3
Required solution (-5/3, -4/3)
Answer:
Option 2nd is correct
[tex](-\frac{5}{3}, -\frac{4}{3})[/tex]
Step-by-step explanation:
Given the system of equation:
[tex]x+y = -3[/tex] .....[1]
y = 2x+2 .....[2]
Substitute equation [2] into [1] we have;
x + 2x+ 2 = -3
Combine like terms;
3x +2 = -3
Subtract 2 from both sides we have;
3x = -5
Divide both sides by 3 we have;
[tex]x = -\frac{5}{3}[/tex]
Substitute the value of x in [2] we have;
[tex]y = 2 \cdot \frac{-5}{3} +2 = -\frac{10}{3} + 2 = -\frac{4}{3}[/tex]
Therefore, the solution for the given system is, [tex](-\frac{5}{3}, -\frac{4}{3})[/tex]