An equilibrium mixture of PCl 5 ( g ) , PCl 3 ( g ) , and Cl 2 ( g ) has partial pressures of 217.0 Torr, 13.2 Torr, and 13.2 Torr, respectively. A quantity of Cl 2 ( g ) is injected into the mixture, and the total pressure jumps to 263.0 Torr at the moment of mixing. The system then re-equilibrates. The chemical equation for this reaction is PCl 3 ( g ) + Cl 2 ( g ) − ⇀ ↽ − PCl 5 ( g ) Calculate the new partial pressures, P , after equilibrium is reestablished.

Respuesta :

Answer:

[tex]p_{PCl_5}=223.407torr\\p_{PCl_3}=6.796torr\\p_{Cl_2}=26.396torr[/tex]

Explanation:

Hello,

In this case, the undergoing chemical reaction is:

[tex]PCl_3(g)+Cl_2(g)\leftrightarrow PCl_5(g)[/tex]

And the equilibrium constant at the reaction's temperature is:

[tex]Kp=\frac{p_{PCl_5}}{p_{PCl_3}p_{Cl_2}}=\frac{217.0torr}{(13.2torr)(13.2torr)} =1.2454[/tex]

Now, even when chlorine is added, such pressure equilibrium constant does not change, therefore, since the initial total pressure is:

[tex]p_{T0}=217.0torr+13.2torr+13.2torr=243.4torr[/tex]

The new pressures, due to the change [tex]x[/tex] owing to the chlorine's addition, turn out:

[tex]p_{PCl_5}=p_{PCl_5}^0+x\\p_{PCl_3}=p_{PCl_3}^0-x\\p_{Cl_2}=p_{Cl_2}^0+p_{Cl_2}^{added}-x[/tex]

Therefore, the added chlorine is:

[tex]p_{Cl_2}^{added}=263torr-243.4torr=19.6torr[/tex]

Thus, the new partial pressures are found via the law of mass action in terms of the change [tex]x[/tex] as follows:

[tex]1.2454=\frac{(217+x)}{(32.8-x)(13.2-x)}[/tex]

Solving for [tex]x[/tex] one obtains:

[tex]x=6.404torr[/tex]

Finally, the new partial pressures result:

[tex]p_{PCl_5}=217torr+6.404torr=223.407torr\\p_{PCl_3}=13.2torr-6.404torr=6.796torr\\p_{Cl_2}=32.8torr-6.404torr=26.396torr[/tex]

Best regards.