The activation energy for the diffusion of copper in silver is 193,000 J/mol. Calculate the diffusion coefficient at 1200 K (927C), given that D at 1000 K (727C) is 1.0 ? 10?14 m2 /s.

Respuesta :

The solution is in the attachment

Ver imagen fahadisahadam

The diffusion coefficient at the temperature of 1200 K is [tex]\mathbf{ 4.68 \times 10^{-13} \ m^2/s}[/tex]

The diffusion coefficient can  be calculated by using the formula;

[tex]\mathbf{D_o = \dfrac{D}{exp(\dfrac{-Q}{R\times T})}}[/tex]

From the given information;

  • the activation energy Q = 193,000 J/mol
  • diffusion coefficient D at temp 1000 k = 1.0 × 10⁻¹⁴ m²/s

[tex]\mathbf{D_o = \dfrac{1 \times 10 ^{-14} \ m^2/s}{exp(\dfrac{-193000 \ J/mol}{8.314 \ J/mo.K\times 1000 \ K})}}[/tex]

[tex]\mathbf{D_o = \dfrac{1 \times 10 ^{-14} \ m^2/s}{8.28 \times 10^{-11}}}[/tex]

[tex]\mathbf{D_o = 1.2 \times 10^{-4} \ m^2/s}[/tex]

Thus, the diffusion constant [tex]\mathbf{D_o = 1.2 \times 10^{-4} \ m^2/s}[/tex]

Now, since the diffusion constant is known, we can use the same above formula to determine the diffusion coefficient at 1200 K (927C).

[tex]\mathbf{D_o = \dfrac{D}{exp(\dfrac{-Q}{R\times T})}}[/tex]

[tex]\mathbf{D = {D_o} \times {exp(\dfrac{-Q}{R\times T})}}[/tex]

[tex]\mathbf{D =1.2 \times 10^{-4} \ m^2/s \times {exp(\dfrac{-193000 \ J/mol}{8.314 \ J.mol/K \times 1200 \ K})}}[/tex]

[tex]\mathbf{D =1.2 \times 10^{-4} \ m^2/s \times 3.9 \times 10^{-9}}}[/tex]

[tex]\mathbf{D = 4.68 \times 10^{-13} \ m^2/s}[/tex]

Therefore, we can conclude that the diffusion coefficient at the temperature of 1200 K is [tex]\mathbf{ 4.68 \times 10^{-13} \ m^2/s}[/tex]

Learn more about activation energy here:

https://brainly.com/question/12558986?referrer=searchResults