Respuesta :
The linear regression equation is (a) [tex]\^y = 0.0877\^x - 9.286[/tex]
The table entry is given as:
x y
1400 105
1700 135
1500 133
To determine the equation, we make use of a graphing calculator.
From the graphing calculator, we have:
- Sum of X = 4600
- Sum of Y = 373
- Mean X = 1533.3333
- Mean Y = 124.3333
- Sum of squares (SSX) = 46666.6667
- Sum of products (SP) = 4066.6667
The regression equation is represented as:
[tex]\^y = b\^x + a[/tex]
Where
[tex]b =\frac{SP}{SSX}[/tex]
So, we have:
[tex]b = \frac{4066.67}{46666.67}[/tex]
[tex]b= 0.08714[/tex]
Also, we have:
[tex]a = MY - bMX[/tex]
[tex]a = 124.33 - (0.09*1533.33)[/tex]
[tex]a= -9.28571[/tex]
Substitute the values of (a) and (b) in [tex]\^y = b\^x + a[/tex]
[tex]\^y = 0.08714\^x - 9.28571[/tex]
Approximate
[tex]\^y = 0.087\^x - 9.286[/tex]
Hence, the equation is (a) [tex]\^y = 0.0877\^x - 9.286[/tex]
Read more about linear regression equations at:
https://brainly.com/question/25472374