Respuesta :

Answer:

[tex]y=-2(x-1)^2+5[/tex]

Step-by-step explanation:

we have

[tex]y=-2x^2+4x+3[/tex]

This is the equation of a vertical parabola open downward

The vertex represent a maximum

Convert the quadratic equation into vertex form

step 1

Factor -2

[tex]y=-2(x^2-2x)+3[/tex]

step 2

Complete the square

[tex]y=-2(x^2-2x+1)+3+2[/tex]

[tex]y=-2(x^2-2x+1)+5[/tex]

step 3

Rewrite as perfect squares

[tex]y=-2(x-1)^2+5[/tex] ----> equation in vertex form

The vertex is the point (1,5)