Respuesta :

[tex]$\frac{\frac{1}{a}-\frac{1}{b}}{\frac{1}{a}+\frac{1}{b}}=\frac{b-a}{b+a}[/tex]

Solution:

Given expression:

[tex]$\frac{\frac{1}{a}-\frac{1}{b}}{\frac{1}{a}+\frac{1}{b}}[/tex]

To simplify the given expression:

[tex]$\frac{\frac{1}{a}-\frac{1}{b}}{\frac{1}{a}+\frac{1}{b}}[/tex]

Let us first solve the numerator of the expression [tex]\frac{1}{a} -\frac{1}{b}[/tex].

To add or subtract the fraction, the denominators of the fraction must be same.

To make it same, multiply [tex]\frac{1}{a}[/tex] by [tex]\frac{b}{b}[/tex] and [tex]\frac{1}{b}[/tex] by [tex]\frac{a}{a}[/tex].

[tex]$\frac{1}{a} -\frac{1}{b}=\frac{b}{ab} -\frac{a}{ab}[/tex]

          [tex]$=\frac{b-a}{ab}[/tex] ------------------- (1)

Now, solve the denominator of the expression [tex]\frac{1}{a} +\frac{1}{b}[/tex].

To add or subtract the fraction, the denominators of the fraction must be same.

To make it same, multiply [tex]\frac{1}{a}[/tex] by [tex]\frac{b}{b}[/tex] and [tex]\frac{1}{b}[/tex] by [tex]\frac{a}{a}[/tex].

[tex]$\frac{1}{a} +\frac{1}{b}=\frac{b}{ab} +\frac{a}{ab}[/tex]

          [tex]$=\frac{b+a}{ab}[/tex]  ------------------- (2)

Substitute (1) and (2) in the given expression.

[tex]$\frac{\frac{1}{a}-\frac{1}{b}}{\frac{1}{a}+\frac{1}{b}}=\frac{\frac{b-a}{ab}}{\frac{b+a}{ab}}[/tex]

Using rational rule: [tex]$\frac{\frac{x}{y} }{\frac{w}{z} }=\frac{x}{y} \times\frac{z}{w}[/tex]

        [tex]$=\frac{b-a}{ab}}\times {\frac{ab}{b+a}}[/tex]

Common factor ab get canceled.

        [tex]$=\frac{b-a}{b+a}[/tex]    

[tex]$\frac{\frac{1}{a}-\frac{1}{b}}{\frac{1}{a}+\frac{1}{b}}=\frac{b-a}{b+a}[/tex]

Hence the simplified expression is [tex]\frac{b-a}{b+a}[/tex].