Respuesta :

Answer:

[tex]\frac{3b\sqrt[3]{c^{2}} }{a^{2} }[/tex]

Step-by-step explanation:

∛(27a⁻⁶b³c²)

To simplify, first apply the cube root the each of the terms. Keep in mind this rule: [tex]\sqrt[n]{a^{m}}  = (\sqrt[n]{a})^{m} = a^{m/n}[/tex]

∛27 = 3    (because 3*3*3 = 27)

∛a⁻⁶ = [tex]a^{-6/3}[/tex] = [tex]a^{-2}[/tex] = [tex]\frac{1}{a^{2}}[/tex]

∛b³ = [tex]b^{3/3}[/tex] = [tex]b^{1}[/tex] = b

∛c² = [tex]c^{2/3}[/tex]

∛(27a⁻⁶b³c²)

= [tex]\frac{3b\sqrt[3]{c^{2}} }{a^{2} }[/tex]

Simplified form generally follows these rules:

No negative exponents

No fraction exponents

Keep in fractional form

Reduce numerical values