Respuesta :
Answer:
[tex]y = 2x + 3[/tex]
Step-by-step explanation:
First, we can find the slope of the line.
[tex]m = \frac{y1-y2}{x1-x2}\\m=\frac{9-5}{3-1}\\m = \frac{4}{2}=2\\[/tex]
Using the [tex]y = mx + b[/tex] equation, we can solve for b
[tex]9 = 2(3)+b\\9 = 6 + b\\b = 9-6 = 3[/tex]
Let's see if [tex]y = 2x + 3[/tex] works
[tex]2(1) + 3 \\2 + 3 = 5\\\\2(3) + 3\\6 + 3 = 9[/tex]
It checks out!
If f(1)=5 and f(3)=9 we are given two points, so we can use the slope intercept form to find the equation of f(x)
Points:(1,5),(3,9)
Slope intercept form: y2-y1=m(x2-x1)
9-5=m(3-1)
4=m(2)
m=2
f(x)=2x+b Plug in a point and solve for b
5=2(1)+b
3=b
Answer: f(x)=2x+3
Points:(1,5),(3,9)
Slope intercept form: y2-y1=m(x2-x1)
9-5=m(3-1)
4=m(2)
m=2
f(x)=2x+b Plug in a point and solve for b
5=2(1)+b
3=b
Answer: f(x)=2x+3