Respuesta :

area=LW
perimiter=2(L+W)

aera=36
P=25

36=LW
25=2(L+W)


25=2(L+W)
divide both sides by 2
12.5=L+W
minus W
12.5-W=L

sub for L
36=W(12.5-W)
36=12.5W-W^2
minus (12.5W-W^2) both sides
0=W^2-12.5W+36
use quadratic formula

if you have
ax^2+bx+c=0
x=[tex] \frac{-b+/- \sqrt{b^{2}-4ac} }{2a} [/tex]

a=1
b=-12.5
c=36

W=[tex] \frac{-(-12.5)+/- \sqrt{(-12.5)^{2}-4(1)(36)} }{2(1)} [/tex]
W=[tex] \frac{12.5+/- \sqrt{156.25-144} }{2} [/tex]
W=[tex] \frac{12.5+/- \sqrt{12.25} }{2} [/tex]
aprox
W=8 or 4.5

sub
12.5-W=L


12.5-8=L=4.5
12.5-4.5=L=8
either way

the dimentions are 4.5cm by 8 cm
Leader
[tex]\sf\\P=2L+2W=25 \sf\\A=LW=36\\\\Find\ the\ value\ of\ one\ of\ the\ variables\ in\ terms\ of\ the\ other. \sf\\36=LW\\W= \frac{36}{L}\\\\Substitute.\\P=25\\=2L+2W\\=2L+2( \frac{36}{L} )\\=2L+ \frac{72}{L} \\\\Make\ them\ have\ a\ common\ denominator.\\2L+\frac{72}{L}\\= \frac{2L}{1} +\frac{72}{L}\\=\frac{2L^2}{L}+ \frac{72}{L} \\= \frac{2L^2+72}{L} \\\\Multiply\ L\ on\ the\ other\ side.\\25L=2L^2+72\\0=2L^2-25L+72\\\\Use\ the\ quadratic\ formula.\\ L=\frac{-b+/- \sqrt{b^{2}-4ac} }{2a}\\ax^2+bx+c[/tex]
[tex]a=2\\b=-25\\c=72\\\\ L=\frac{-(-25) +/- \sqrt{(-25)^{2}-4(2)(72)} }{2(2)} \\ =\frac{25+/- \sqrt{625-576} }{4} \\ =\frac{25+/- \sqrt{49} }{4}\\ =\frac{25(+/-)7}{4} \\\\\sf\ We\ now\ have\ two\ options.\\(1) L=\frac{25+7}{4}= \frac{32}{4} =8\\(2)L=\frac{25-7}{4}= \frac{18}{4} =4.5\\\\\sf\ Either\ W\ is\ 8\ and\ L\ is\ 4.5\ or\ W\ is\ 4.5\ and\ L\ is\ 8.\ It\ doesn't\ matter.\\\\{\boxed{The\ dimensions\ are\ 8\ cm\ by\ 4.5\ cm.}[/tex]