Answer:
(2/3) times height collision occur
Explanation:
for ball A
from the kinematic equation
the distance of ball A is
[tex]x_A = v_0 t + \frac{1}{2} at^2[/tex]
[tex]v_0* t [/tex]= velocity ( time ) = distance
since ball is at height, the above equation changes as
[tex]x_A = H - \frac{1}{2} gt^2[/tex]
for ball B
[tex]xB = v0 t - \frac{1}{2} gt^2[/tex]
the condition of collision is
xA = xB
[tex]vA = - 2vB[/tex] (given)
from the kinematic equation
the speed of the ball A is
[tex]v_A = u- gt[/tex]
since initial speed of the ball A is zero
, so
[tex]v_A = -gt[/tex]
the speed of the ball B is
[tex]v_B = v_0 - gt[/tex]
since[tex]v_A = - 2v_B[/tex]
[tex]-gt = -2 ( v_0 - gt)[/tex]
[tex]-gt = -2 v_0 +2gt[/tex]
[tex]3gt =2 v_0[/tex]
[tex]t = \frac{2v_0}{3g}[/tex]
since [tex]x_A = x_B[/tex]
[tex]H - \frac{1}{2} gt^2= v_0 t - \frac{1}{2} gt^2 [/tex]
[tex]H = v_0 t[/tex]
[tex]= v_0 (2v_0/3g)[/tex]
[tex]= \frac{2 v_0^2}{ 3g}[/tex]
[tex]x_A = 2 (\frac{v_0^2}{ 3g})- \frac{1}{2} gt^2[/tex]
[tex]= 4 \frac{v_0^2}{9g} = (2/3) H[/tex]
so, (2/3) times height collision occur