Respuesta :

Answer:

1) 9/cos(θ)

2)4[tex]\sqrt{3}[/tex](cos(198) +isin(198))

3)z= cos(π/3) +isin(π/3)

Step-by-step explanation:

x=9

i.e. x= 9 +i0

θ= tan^-1 (0/9)

θ= tan^-1 (0)

=0

hence z= r(cosθ +i sinθ)

            = 9(cos 0 + isin 0)

            = 9

As cos (0) = 1 hence polar form of x=9 is 9/cos(θ) where θ=0

2)

Given

z1=2[tex]\sqrt{3}[/tex]( cos(116)+isin(116))

z2=2(cos(82)+isin(82))

As per the product formula od complex polar numbers:

z1.z2= r1.r2(cos(θ1+θ2) +isin(θ1+θ2) )

Putting the values

          = 4[tex]\sqrt{3}[/tex](cos(198) +isin(198))

3)

z= 1/2 + i[tex]\sqrt{3}[/tex]/2

r= [tex]\sqrt{(1/2)^{2}+(\sqrt{3}/2) ^{2}  }[/tex]

r = [tex]\sqrt{1/4 +3/4} \\\sqrt{4/4}\\\sqrt{1}[/tex]

r=1

θ= tan^-1 [tex](\sqrt{3}/2 ) / (1/2)[/tex]

= tan^-1[tex]\sqrt{3}[/tex]

=60

=π/3

hence

z= cos(π/3) +isin(π/3) !