Respuesta :

Answer:

see explanation

Step-by-step explanation:

Note that cos315° = cos45° and sin315° = - sin45° and

cos45° = sin45° = [tex]\frac{1}{\sqrt{2} }[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex]

Hence

12(cos315° + isin315°)

= 12(cos45° - isin45°)

= 12([tex]\frac{\sqrt{2} }{2}[/tex] - i [tex]\frac{\sqrt{2} }{2}[/tex])

= 6[tex]\sqrt{2}[/tex] - 6i [tex]\sqrt{2}[/tex]