Respuesta :

For this case we must solve a quadratic equation of the form:

[tex]ax ^ 2 + bx + c[/tex]

Which roots are given by:

[tex]\frac {-b \pm \sqrt {b ^ 2-4 (a) (c)}} {2 (a)}[/tex]

In this case we have:

[tex]x ^ 2 + 3x + 1[/tex]

So:

[tex]a = 1\\b = 3\\c = 1[/tex]

Substituting:

[tex]\frac {-3 \pm \sqrt {3 ^ 2-4 (1) (1)}} {2 (1)} =\\\frac {-3 \pm \sqrt {9-4}} {2} =\\\frac {-3 \pm \sqrt {5}} {2}[/tex]

So, we have two roots:

[tex]x_ {1} = \frac {-3+ \sqrt {5}} {2}\\x_ {2} = \frac {-3- \sqrt {5}} {2}[/tex]

ANswer:

[tex]x_ {1} = \frac {-3+ \sqrt {5}} {2}\\x_ {2} = \frac {-3- \sqrt {5}} {2}[/tex]