Answer: [tex]105.19 \text{ square cm}[/tex]
Step-by-step explanation:
Since, by the SAS formula of finding the area of triangle,
The area of triangle, [tex]A = \frac{1}{2}\times s_1\times s_2\times sin\theta[/tex]
Where, [tex]s_1[/tex] and [tex]s_2[/tex] are adjacent sides and [tex]\theta[/tex] is the included angle of these sides
Here, [tex]s_1=22[/tex] [tex]s_2=10[/tex]
And, [tex]\theta=107^{\circ}[/tex]
Thus, the area of the triangle ABC,
[tex]A = \frac{1}{2}\times 22\times 10\times sin (107)^{\circ}[/tex]
[tex]A = 110\times 0.95630475596[/tex]
[tex]A = 105.193523156\approx 105.19\text { square cm}[/tex]
Therefore, Third Option is correct.