[tex]\bf ~~~~~~~~~~~~\textit{Future Value of an ordinary annuity}\\ ~~~~~~~~~~~~(\textit{payments at the end of the period}) \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right][/tex]
[tex]\bf ~~~~~~ \begin{cases} A= \begin{array}{llll} \textit{accumulated amount}\\ \end{array}\dotfill & \begin{array}{llll} \end{array}\\ pymnt=\textit{periodic payments}\dotfill &250\\ r=rate\to 6\%\to \frac{6}{100}\dotfill &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\dotfill &1\\ t=years\dotfill &12 \end{cases}[/tex]
[tex]\bf A=250\left[ \cfrac{\left( 1+\frac{0.06}{1} \right)^{1\cdot 12}-1}{\frac{0.06}{1}} \right]\implies A=250\left(\cfrac{1.06^{12}-1}{0.06} \right) \\\\\\ A\approx 250(16.86994)\implies A\approx 4217.485[/tex]