The foci of the hyperbola are ( 13 , 0) and (− 13 , 0), and the asymptotes are y = 12 x and y = − 12 x. find an equation of the conic section with the given properties. use x and y as the variables in your answer.

Respuesta :

y=k+- a/b(x-h)

y=-+12x

12=a/b

a=12b

c²=a²+b²

(13,0) and (-13,0)

13²=(12b)²+b²

169=145b²

b= 13/12

169=a²+169/145

a²= 24336/145

x²/a²-y²/b²=1

145x²/24336 + 145y²/169=1



The equation of the conic section is [tex]\frac{145x\²}{24336} - \frac{145y\²}{169}=1[/tex]

The foci of the hyperbola are given as: (13,0) and (-13,0)

The asymptote is given as [tex]y =\pm 12x[/tex]

Divide both sides of [tex]y =\pm 12x[/tex] by x.

[tex]\frac yx = \pm 12[/tex]

Where y/x = a/b.

So, we have:

[tex]\frac ab = \pm 12[/tex]

Make a the subject

[tex]a = \pm 12b[/tex]

Recall that

[tex]c\²=a\²+b\²[/tex]

Where:

[tex]c = \pm13[/tex]

[tex]c\²=a\²+b\²[/tex] becomes

[tex](\pm 13)^2 = (\pm 12b)^2 +b^2[/tex]

[tex]169 = 144b^2 +b^2[/tex]

Evaluate like terms

[tex]169 = 145b^2[/tex]

Make b^2 the subject

[tex]b^2 = \frac{169}{145}[/tex]

Recall that [tex]a = \pm 12b[/tex]

Square both sides

[tex]a^2 = 144b^2[/tex]

Substitute  [tex]b^2 = \frac{169}{145}[/tex]

[tex]a^2 = 144 \times \frac{169}{145}[/tex]

[tex]a^2 = \frac{24336}{145}[/tex]

The equation of the conic section is represented as:

[tex]\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1[/tex]

Substitute known values

[tex]\frac{x^2}{24336/145} - \frac{y^2}{169/145} = 1[/tex]

Rewrite as:

[tex]\frac{145x\²}{24336} - \frac{145y\²}{169}=1[/tex]

Hence, the equation of the conic section is [tex]\frac{145x\²}{24336} - \frac{145y\²}{169}=1[/tex]

Read more about hyperbolas at:

https://brainly.com/question/7352570