Respuesta :
y=k+- a/b(x-h)
y=-+12x
12=a/b
a=12b
c²=a²+b²
(13,0) and (-13,0)
13²=(12b)²+b²
169=145b²
b= 13/12
169=a²+169/145
a²= 24336/145
x²/a²-y²/b²=1
145x²/24336 + 145y²/169=1
y=-+12x
12=a/b
a=12b
c²=a²+b²
(13,0) and (-13,0)
13²=(12b)²+b²
169=145b²
b= 13/12
169=a²+169/145
a²= 24336/145
x²/a²-y²/b²=1
145x²/24336 + 145y²/169=1
The equation of the conic section is [tex]\frac{145x\²}{24336} - \frac{145y\²}{169}=1[/tex]
The foci of the hyperbola are given as: (13,0) and (-13,0)
The asymptote is given as [tex]y =\pm 12x[/tex]
Divide both sides of [tex]y =\pm 12x[/tex] by x.
[tex]\frac yx = \pm 12[/tex]
Where y/x = a/b.
So, we have:
[tex]\frac ab = \pm 12[/tex]
Make a the subject
[tex]a = \pm 12b[/tex]
Recall that
[tex]c\²=a\²+b\²[/tex]
Where:
[tex]c = \pm13[/tex]
[tex]c\²=a\²+b\²[/tex] becomes
[tex](\pm 13)^2 = (\pm 12b)^2 +b^2[/tex]
[tex]169 = 144b^2 +b^2[/tex]
Evaluate like terms
[tex]169 = 145b^2[/tex]
Make b^2 the subject
[tex]b^2 = \frac{169}{145}[/tex]
Recall that [tex]a = \pm 12b[/tex]
Square both sides
[tex]a^2 = 144b^2[/tex]
Substitute [tex]b^2 = \frac{169}{145}[/tex]
[tex]a^2 = 144 \times \frac{169}{145}[/tex]
[tex]a^2 = \frac{24336}{145}[/tex]
The equation of the conic section is represented as:
[tex]\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1[/tex]
Substitute known values
[tex]\frac{x^2}{24336/145} - \frac{y^2}{169/145} = 1[/tex]
Rewrite as:
[tex]\frac{145x\²}{24336} - \frac{145y\²}{169}=1[/tex]
Hence, the equation of the conic section is [tex]\frac{145x\²}{24336} - \frac{145y\²}{169}=1[/tex]
Read more about hyperbolas at:
https://brainly.com/question/7352570